Intra-arterial mitoxantrone delivery in rabbits: an optical pharmacokinetic study.

نویسندگان

  • Shailendra Joshi
  • Roberto Reif
  • Mei Wang
  • Jane Zhang
  • Aysegul Ergin
  • Jeffery N Bruce
  • Robert L Fine
  • Irving J Bigio
چکیده

BACKGROUND Several human studies have demonstrated the feasibility of intra-arterial delivery of mitoxantrone in systemic malignancies. Computational models predict that an intra-arterial bolus injection of mitoxantrone during transient cerebral hypoperfusion will enhance brain tissue drug deposition in comparison with injections during normal blood flow. OBJECTIVE To assess whether transient reduction in cerebral blood flow would enhance the delivery of mitoxantrone. This is accomplished by obtaining real-time measurements of mitoxantrone concentrations in brain tissues by using a novel optical pharmacokinetics technique, based on reflectance spectroscopy. METHODS The blood-brain barrier of anesthetized rabbits was disrupted by intracarotid injection of mannitol (8 mL, 25% over 40 seconds). Thereafter, animals received 3 mg of mitoxantrone injection during normal perfusion (n = 5) or cerebral hypoperfusion that was induced by contralateral arterial occlusion and systemic hypotension (n = 8). RESULTS Cerebral hypoperfusion significantly decreased the cerebral blood flow, allowing a longer exposure time of the drug. It was determined that therapeutic concentrations of mitoxantrone were achieved in both groups; however, hypoperfusion did not increase the tissue concentrations of mitoxantrone after 20 minutes. CONCLUSION These results demonstrate the effective delivery of mitoxantrone by the intra-arterial route, after blood-brain-barrier disruption, but the predicted benefits of flow reduction for improving intra-arterial deposition of mitoxantrone was not evident.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging.

We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a crosscorrelation between the two methods for absorption extraction and drug concentra...

متن کامل

Noninvasive in vivo optical assessment of blood brain barrier permeability and brain tissue drug deposition in rabbits.

Osmotic disruption of the blood brain barrier (BBB) by intraarterial mannitol injection is sometimes the key step for the delivery of chemotherapeutic drugs to brain tissue. BBB disruption (BBBD) with mannitol, however, can be highly variable and could impact local drug deposition. We use optical pharmacokinetics, which is based on diffuse reflectance spectroscopy, to track in vivo brain tissue...

متن کامل

Blood oxygenation during hyperpressure intraperitoneal fluid administration in a rabbit model of severe liver injury: Evaluation of a novel concept for control of pre-hospital liver bleeding

Oxygen is an essential part of the most important metabolic pathways in aerobic organisms. Oxygen delivery is merely dependent on blood, rendering blood loss a devastating event. Traumatic pre-hospital liver bleeding is a major cause of early trauma deaths in human and animals, with no established therapeutic method yet. Increasing intra-abdominal pressure (IAP) has been shown to reduce liver b...

متن کامل

Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue.

The understanding of drug delivery to organs, such as the brain, has been hampered by the inability to measure tissue drug concentrations in real time. We report an application of an optical spectroscopy technique that monitors in vivo the real-time drug concentrations in small volumes of brain tissue. This method will facilitate development of new protocols for delivery of drugs to treat brain...

متن کامل

Transarterial wall oxygen gradients at the deployment site of an intra-arterial stent in the rabbit.

Intimal hyperplasia, common at the deployment site of an intra-arterial stent, may be caused by artery wall hypoxia. The purpose of this study was to determine the effect of an intra-arterial stent on artery wall oxygen concentrations. Transarterial wall oxygen gradients were measured by microelectrode at stent deployment sites in New Zealand White rabbits. Thinned artery walls and decreased ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurosurgery

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 2011